Answer:
1) 51 m
2) Some energy was transformed to other forms. (This question)
3) 3.24 J
4) 45 J
5) 1020 J
Explanation:
100%
Incomplete question. However, I provided a brief about Kinetic energy generation.
<u>Explanation:</u>
Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.
It is often calculated using the formula E =
A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.
Given :
Vector A has a magnitude of 63 units and points west, while vector B has the same magnitude and points due south.
To Find :
The magnitude and direction of
a) A + B .
b) A - B.
Solution :
Let , direction in north is given by +j and east is given by +i .
So , and
Now , A + B is given by :
Direction of A+B is 45° north of west .
Also , for A-B :
Direction of A-B is 45° south of west .
( When two vector of same magnitude which are perpendicular to each other are added or subtracted the resultant is always 45° from each of them)
Hence , this is the required solution .
Integrating the velocity equation, we will see that the position equation is:
<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:
To get the position equation we just need to integrate the above equation:
Then:
Replacing that in our integral we get:
Where C is a constant of integration.
Now we remember that
Then we have:
To find the value of C, we use the fact that f(0) = 0.
C = -1 / 3
Then the position function is:
Integrating the velocity equation, we will see that the position equation is:
To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4
The discovery which Carnot made was that THE DIFFERENCE IN THE TEMPERATURES BETWEEN THE HOT AND THE COLD RESERVOIRS DETERMINE HOW WELL A HEAT ENGINE WOULD WORK.
Sadi Carnot was a French engineer, He proposed a theoretical thermodynamic cycle in 1824. In his cycle, Said hold that the efficiency of a heat engine depends on the temperature difference between its hot reservoir and cold reservoir.