Answer:
18.7842493212 W
Explanation:
T = Tension = 1871 N
= Linear density = 3.9 g/m
y = Amplitude = 3.1 mm
= Angular frequency = 1203 rad/s
Average rate of energy transfer is given by

The average rate at which energy is transported by the wave to the opposite end of the cord is 18.7842493212 W
Theres: the vacuole, nucleus, rough endoplamid reticulum, smooth endoplasmic reticulum, cell memebrane, cell wall, chloroplast, mitochondria, golgi apperatus, lysosomes, and ribosomes
Answer:
50 Mph.
Explanation:
According to the National Severe Storms Laboratory, winds can really begin to cause damage when they reach <em><u>50 mph</u></em>. But here’s what happens before and after they reach that threshold, according to the Beaufort Wind Scale (showing estimated wind speeds): - at 19 to 24 mph, smaller trees begin to sway.
Its b i literally have had this exact question
Hello
1) First of all, since we know the radius of the wire (

), we can calculate its cross-sectional area

2) Then, we can calculate the current density J inside the wire. Since we know the current,

, and the area calculated at the previous step, we have

3) Finally, we can calculate the electric field E applied to the wire. Given the conductivity

of the aluminium, the electric field is given by