Divide
(the distance covered in some period of time)
by
(the time taken to cover the distance).
The quotient is the average speed during that period of time.
Answer:
the object is decelerating

The net force acting on the block is ~


So, the Answer in the boxes will be ~

When a person has experienced a tire blow out, there are steps to follow in order to prevent harm to others and self. After following the required and helpful steps after a tire blow out, slowed down and regain control, it is best that the person should head to a stop road or at the safe side of the lane where they won't be a bother to the road or to people driving in the high way. After pulling over to the side, it is advisable to turn on the emergency flashers of the car. This will set as a signal that you are in need of help or had gone through a problem.
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J