Put a parashoot on it so it touches the ground lightly and carefully
Answer:
(a) 0.81 V
(b) 0.52 V
Explanation:
Number of turns, N = 150
Radius, r = 2.5 cm = 0.025 m
Magnetic field, B = 0.060 T
f = 440 rev/min = 440 / 60 = 7.33 rps
A.
The maximum emf is given by
e = N x B x A x 2 x π x f
e = 150 x 0.060 x 3.14 x 0.025 x 0.025 x 2 x 3.14 x 7.33
e = 0.81 V
B.
The back emf is given by
e' = 2e / π = 2 x 0.81 / 3.14 = 0.52 V
Answer:
Because nuclear decay releases ionizing radiation (alpha, beta, and gamma radiation) we call such compounds radioactive.
Explanation:
The <em>estimated</em> displacement of the center of mass of the olive is
.
<h3>Procedure - Estimation of the displacement of the center of mass of the olive</h3>
In this question we should apply the definition of center of mass and difference between the coordinates for <em>dynamic</em> (
) and <em>static</em> conditions (
) to estimate the displacement of the center of mass of the olive (
):
(1)
Where:
- x-Coordinate of the i-th element of the system, in meters.
- y-Coordinate of the i-th element of the system, in meters.
- x-Component of the net force applied on the i-th element, in newtons.
- y-Component of the net force applied on the i-th element, in newtons.
- Mass of the i-th element, in kilograms.
- Gravitational acceleration, in meters per square second.
If we know that
,
,
,
,
,
and
, then the displacement of the center of mass of the olive is:
<h3>Dynamic condition
![\vec{r} = \left[\frac{(0)\cdot (0.50)\cdot (9.807)+(0)\cdot (0) + (1)\cdot (1.50)\cdot (9.807) + (1)\cdot (-3)}{(0.50)\cdot (9.807) + 0 + (1.50)\cdot (9.807)+(-3)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (0)\cdot (3) + (2)\cdot (1.50)\cdot (9.807) +(2) \cdot (-2)}{(0.50)\cdot (9.807) + (3)+(1.50)\cdot (9.807)+(-2)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%2B%280%29%5Ccdot%20%280%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%28-3%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%200%20%2B%20%281.50%29%5Ccdot%20%289.807%29%2B%28-3%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%280%29%5Ccdot%20%283%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%20%2B%282%29%20%5Ccdot%20%28-2%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%283%29%2B%281.50%29%5Ccdot%20%289.807%29%2B%28-2%29%7D%20%20%5Cright%5D)
![\vec r = (0,704, 1.233)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r%20%3D%20%280%2C704%2C%201.233%29%5C%2C%5Bm%5D)
</h3>
<h3>Static condition</h3><h3>
![\vec{r}_{o} = \left[\frac{(0)\cdot (0.50)\cdot (9.807) + (1)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807) + (1.50)\cdot (9.807)}, \frac{(0)\cdot (0.50)\cdot (9.807) + (2)\cdot (1.50)\cdot (9.807)}{(0.50)\cdot (9.807)+(1.50)\cdot (9.807)} \right]](https://tex.z-dn.net/?f=%5Cvec%7Br%7D_%7Bo%7D%20%3D%20%5Cleft%5B%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%20%2B%20%281.50%29%5Ccdot%20%289.807%29%7D%2C%20%5Cfrac%7B%280%29%5Ccdot%20%280.50%29%5Ccdot%20%289.807%29%20%2B%20%282%29%5Ccdot%20%281.50%29%5Ccdot%20%289.807%29%7D%7B%280.50%29%5Ccdot%20%289.807%29%2B%281.50%29%5Ccdot%20%289.807%29%7D%20%20%5Cright%5D)
</h3><h3>
![\vec r_{o} = \left(0.75, 1.50)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7Bo%7D%20%3D%20%5Cleft%280.75%2C%201.50%29%5C%2C%5Bm%5D)
</h3><h3 /><h3>Displacement of the center of mass of the olive</h3>

![\overrightarrow{\Delta r} = (0.704-0.75, 1.233-1.50)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%280.704-0.75%2C%201.233-1.50%29%5C%2C%5Bm%5D)
![\overrightarrow{\Delta r} = (-0.046, -0.267)\,[m]](https://tex.z-dn.net/?f=%5Coverrightarrow%7B%5CDelta%20r%7D%20%3D%20%28-0.046%2C%20-0.267%29%5C%2C%5Bm%5D)
The <em>estimated</em> displacement of the center of mass of the olive is
. 
To learn more on center of mass, we kindly invite to check this verified question: brainly.com/question/8662931
Pressure = total force/total area
Total force = 660 Newton's
Total area:
Each leg contacts the floor with an area of πr^2=π(0.025m)^2=0.002m^2.
Total contact area for all 3 legs = 0.006 m^2.
Pressure = (660N) / (0.006 m^2)
= 110,000 N/m^2 = 110,000 Pascal's.