Answer:
0.42 m/s²
Explanation:
r = radius of the flywheel = 0.300 m
w₀ = initial angular speed = 0 rad/s
w = final angular speed = ?
θ = angular displacement = 60 deg = 1.05 rad
α = angular acceleration = 0.6 rad/s²
Using the equation
w² = w₀² + 2 α θ
w² = 0² + 2 (0.6) (1.05)
w = 1.12 rad/s
Tangential acceleration is given as
= r α = (0.300) (0.6) = 0.18 m/s²
Radial acceleration is given as
= r w² = (0.300) (1.12)² = 0.38 m/s²
Magnitude of resultant acceleration is given as


= 0.42 m/s²
It increases
Explanation:
A circuit's resistance increases as more resistors are added to it in series.
Series connection of circuit provides an additive increase in the resistance offered by the overall circuit.
A resistor is a device in a circuit that impedes the flow of electric current. It simply uses electric current.
Examples are bulbs, radio, television.
The more of these devices connected one to another in series, the more the resistance increases.
learn more;
Voltage brainly.com/question/6949231
#learnwithBrainly
Answer:
8) d
9) c
<em>Hope this helps! :)</em>
Answer:
The new potential energy decreases by the factor of 2 to the old potential energy.
Explanation:
Capacitance of a parallel plate capacitor is given by the relation :
C = (ε₀A)/d
Here ε₀ is vacuum permittivity, A is area of the capacitor plate and d is the distance between them.
Potential energy of the capacitor, U = 
Here V is the potential difference between the plates.
According to the problem, the distance between the plates get double but area remains same. So,
d₁ = 2d
Here d₁ is new distance between the plates.
Hence, new capacitance is :
C₁ = (ε₀A)/d₁ = (ε₀A)/2d = C/2
The capacitor have same potential difference that is V. Hence, the new potential energy is :
U₁ =
= 
U₁ = U/2

Explanation:
We need convert the velocities first to m/s and we get the following:
v2 = 21 km/hr = 5.8 m/s
v1 = 11 km/hr = 3.1 m/s
We need to find the mass of the car also for later use do using the work-energy theorem:

6.0x10^3 J = (0.5) m [(5.8)^2 - (3.1)^2]
or
m = 499.4 kg
Now we determine work needed delta W to change its velocity from 21 km/hr to 33 km/hr
v2 = 33 km/hr = 9.2 m/s
v1 = 21 km/hr = 5.8 m/s
delta W = (0.5)(499.4)[(9.2)^2 - (5.8)^2]
= 1.3 x 10^4 J