Answer:
= 7.57 × 104
(scientific notation)
= 7.57e4
(scientific e notation)
= 75.7 × 103
(engineering notation)
(thousand; prefix kilo- (k))
Explanation:
Just in case this is all of them
Answer: The statement (B) is not true about chemical reactions.
Explanation:
A chemical reaction rate is affected by the several factors few of which are temperature, concentration of reactants, surface area etc.
In a chemical reaction, if temperature is increased then the rate of reaction will increase because it will increase the average kinetic energy of the reactant molecules. Thus, large number of molecules will have minimum energy required for an effective collision.
It is known that increasing the amount of reactants will increase the rate of reaction.
Therefore, rate of reaction will change if concentration or temperature is changed.
Hence, the statement (B) is not true about chemical reactions.
According to Newton's first law of motion, it takes an unbalanced force to move an object at rest.
I hope this helps :)
Answer:
The answer to your question is 64.02 g of H₂O
Explanation:
Data
Mass of magnesium sulfate hepta hydrated = 125 g
Mass of water = ?
Process
1.- Calculate the molar mass of the salt and the molar mass of water
molar mass of MgSO₄ 7H₂O = 24 + 32 + 64 + 14 + 112 = 246 g
mass of H₂O = 2 + 16 = 18 g
2.- Use proportions to calculate the mass of water in the epsom salt
246 g MgSO₄ 7H₂O------------------------- 126 g of H₂O
125 g ------------------------- x
x = (125 x 126)/246
x = 15750/246
x = 64.02 g of H₂O