Answer:
"Your Choice: Liberation From Your Own Choices or Continue the Choice That Decreases Your Liberation."
Explanation:
Liberation is the freeing or release from something restraining you. In this case, smoking holds you back from doing the things you used to do.
It's not that creative, but I hope this is good enough for you! :D (don't smoke)
Data:
p = 1 atm
V = 10 m * 8 m * 5 m = 400 m^3 = 400,000 liter
To = 0 + 273.15K = 273.15K
Tf = 20 + 273.15K = 293.15K
No - Nf =?
2) Formula
pV = NRT => N = pV / (RT)
3) solution
No = pV / (RTo)
Nf = pV / (RTf)
=> No - Nf = [pv / R] [ 1 / To - 1 / Tf ]
=> No - Nf = [1atm*400,000liter / 0.0821 atm*liter/K*mol ] [ 1 / 273.15 - 1 / 293.15]
No - Nf = 1216.9 moles ≈ 1217 moles
Answer: 1217 moles
Answer:
A,C,D,B
Explanation:
1killometer=1000m
1mm=0.001m
1cm=0.01m
base unit of length is meter
Answer:
Any element in group 18 has eight valence electrons (except for helium, which has a total of just two electrons
The ideal gas equation is pV = nRT
From that you can derive several equations, depending on which variables are fixed.
1) When n and T are fixed:
pV = nRT = constant
pV = constant => p1 V1 = p2 V2 => p1 / V2 = p2 / V1 ---> Boyle's Law
2) When n and V are constant:
p / T = nR/V = constant
p / T = constant => p1 / T1 = p2 / T2 ----> Gay - Lussac's Law
3) when n and p are constant
V / T = nR/p = constant
V / T = constant => V1 / T1 = V2 / T2 ---> Charles' Law
4) When only n is constant
pV / T = nR = constant
pV / T = constant => p1 V1 / T1 = p2 V2 / T2 ----> Combined gas law.
There you have the four equations that agree with the ideal gas law.