Answer:
it is just because of the weather because that's how it usually is in Arizona
Explanation:
Answer:
Strong broad peak around 3200-3600 cm-1 should be present
Strong peak around around 1700 cm-1 should be absent
Explanation:
Infrared spectroscopy is an analytical technique which is used for molecular structure characterization by identifying the functional groups present in a given molecule based on the absorption wavelength (or wavenumber).
In an IR spectrum the carbonyl group is associated with the C=O stretch which occurs as a strong peak around around 1700 cm-1. For alcohol the -corresponding O-H stretching frequency occurs as a strong broad peak between 3200-3600 cm-1.
Therefore, in the case of estradiol the presence a strong broad peak in the 3200-3600 cm-1 and the absence of the peak at around 1700 cm-1. would suggest that the transformation is complete.
Answer:
The right word to fill the blank space is GREATER THAN.
Explanation:
In nature, heat in form of temperature is usually transfer from the region of higher temperature to the region of lower temperature. Thus, for heat to be transfer from one substance to another one, the temperature will flow from the body with the higher temperature to that which has a lower temperature, the substance that is giving out the heat must have a higher temperature.
Explanation:
For AX type ceramic material, the number of formula per unit cells is as follows.

or, 
where, n' = no. of formula units per cell
= molecular weight of cation = 90.5 g/mol
= molecular weight of anion = 37.3 g/mol
= volume of cubic cell = 3.55
a = edge length of unit cell = 
= Avogadro's number = 
= density = 3.55 
Now, putting the given values into the above formula as follows.

= 
= 0.9
= 1 (approx)
Therefore, we can conclude that out of the given options crystal structure of cesium chloride is possible for this material.
Answer:
0,040 M
Explanation:
The global reaction of the problem is:
Al(OH) (s) + OH⁻ ⇄ Al(OH)₂⁻(aq) K= 40
The equation of equilibrium is:
K = ![\frac{[Al(OH)_{2} ^-]}{[Al(OH)][OH^-]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAl%28OH%29_%7B2%7D%20%5E-%5D%7D%7B%5BAl%28OH%29%5D%5BOH%5E-%5D%7D)
The concentration of OH⁻ is:
pOH = 14 - pH = <em>3</em>
pOH = -log [OH⁻]
[OH⁻] = 1x10⁻³
Thus:
40 = ![\frac{[Al(OH)_{2} ^-]}{[Al(OH)][1x10^{-3}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BAl%28OH%29_%7B2%7D%20%5E-%5D%7D%7B%5BAl%28OH%29%5D%5B1x10%5E%7B-3%7D%5D%7D)
<em>0,04M =
</em>
This means that 0,04 M are the number of moles that the solvent can dissolve in 1L, in other words, solubility.
I hope it helps!