The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
1) Zn(CH₃COO)₂(s) + 2KOH(aq) = Zn(OH)₂(s) + 2CH₃COOK(aq)
Ksp{Zn(OH)₂}=1.2*10⁻¹⁷
2) Zn(CH₃COO)₂(s) + 2NaCN(aq) = Zn(CN)₂(s) + 2CH₃COONa(aq)
Ksp{Zn(CN)₂}=2.6*10⁻¹³
Ksp{Zn(OH)₂}<Ksp{Zn(CN)₂}
Zn(OH)₂ precipitates first
Answer:
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
Explanation:
2HBr(aq)+Ba(OH)2(aq)⟶2H2O(l)+BaBr2(aq)
We break the compounds into ions. Only compounds in the aqueous form can be turned into ions.
The ionic equation is given as;
2H⁺(aq) + 2Br⁻(aq) + Ba²⁺(aq) + 2OH⁻(aq) --> 2H2O(l) + Ba²⁺(aq) + 2Br⁻(aq)
Upon eliminating the spectator ions; The net equation is given as;
2H⁺(aq) + 2OH⁻(aq) --> 2H2O(l)
The mass of nitrogen gas that participated in the chemical reaction is 1.54g
HOW TO CALCULATE MASS OF AN ELEMENT:
- Mass of a substance can be calculated by multiplying the number of moles in mol of the substance by its molecular mass in g/mol. That is;
- mass (M) = molar mass (MM) × number of moles (n)
According to this question, a chemist determines by measurements that 0.0550 moles of nitrogen gas (N2) participate in a chemical reaction.
- The molecular mass of nitrogen gas (N2) = 14.01(2)
= 28.02g/mol
Hence, the mass of the nitrogen gas that participated in the chemical reaction is calculated as follows:
- Mass (g) = 0.0550 mol × 28.02 g/mol
Therefore, the mass of nitrogen gas that participated in the chemical reaction is 1.54g
Learn more: brainly.com/question/18269198