The equation v=rω says that the tangential speed v is proportional to the distance r from the center of rotation. ... This makes sense because a point farther out from the center has to cover a longer arc length in the same amount of time as a point closer to the center.
Answer:
50 m/s
Explanation:
Angle = 60 degree
Horizontal component of velocity = 50 m/s
A projectile motion is the motion of an object in two dimensions under the influence of gravity.
In this case, the object has no acceleration along horizontal direction, it has acceleration in vertical direction which is equal to the acceleration due to gravity of earth.
When the projectile reaches at the maximum height it travels only along the horizontal and thus it has only horizontal velocity at that instant.
Thus, the velocity of teh projectile at maximum height is same as horizontal component of velocity that meas 50 m/s.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Force is a vector quantity
so pulling from opposite side will be negative
so
750+(-500)= 250N
C is the right answer
becauseause the man on the right applies greater force.