Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
Mechanical energy is made when something is moved. The energy that is moving is kinetic. And potential energy is stored energy. Mechanical energy can be used to store energy and to cause moving energy. For instance: a slingshot. Pulling back the band creates potential energy and releasing it creates kinetic energy.
Answer: idk that is a tough one!
Explanation: that is a hard question IDK
okay this is kinda easy
<u>What is the gravitational field strength on the moon?</u>
The Moon has a gravitational field strength of 1.6 N/kg.