When these bonds are destroyed, a reaction occurs. ... Vinegar reacting with limestone breaks the bonds of calcium carbonate and acetic acid.
Answer:
A boxed 14.0 kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9 ∘ above the horizontal. The monitor's speed is a constant 2.30 cm/s.
how much work is done on the monitor by (a) friction, (b) gravity
work(friction) = 453.5J
work(gravity) = -453.5J
Explanation:
Given that,
mass = 14kg
displacement length = 5.50m
displacement angle = 36.9°
velocity = 2.30cm/s
F = ma
work(friction) = mgsinθ .displacement
= (14) (9.81) (5.5sin36.9°)
= 453.5J
work(gravity)
= the influence of gravity oppose the motion of the box and can be pushing down, on the box from and angle of (36.9° + 90°)
= 126.9°
work(gravity) = (14) (9.81) (5.5cos126.9°)
= -453.5J
Answer:
Explanation:
Bone has a Young’s modulus of about
1.8 × 1010 Pa . Under compression, it can
withstand a stress of about 1.66 × 108 Pa before breaking.
Assume that a femur (thigh bone) is 0.56 m
long, and calculate the amount of compression
this bone can withstand before breakin :).
Answer:
A reference frame is that frame to which the qualities of an object are related:
For instance - an object may described by - mass, speed, acceleration, size, etc,
It is important to remember that Newton's Laws of motion do not hold in accelerated reference frames -
Einstein's laws of special relativity are only true in frames that move with contant speed to one another
Since the ladder is standing, we know that the coefficient
of friction is at least something. This [gotta be at least this] friction
coefficient can be calculated. As the man begins to climb the ladder, the
friction can even be less than the free-standing friction coefficient. However,
as the man climbs the ladder, more and more friction is required. Since he
eventually slips, we know that friction is less than what's required at the top
of the ladder.
The only "answer" to this problem is putting lower
and upper bounds on the coefficient. For the lower one, find how much friction
the ladder needs to stand by itself. For the most that friction could be, find
what friction is when the man reaches the top of the ladder.
Ff = uN1
Fx = 0 = Ff + N2
Fy = 0 = N1 – 400 – 864
N1 = 1264 N
Torque balance
T = 0 = N2(12)sin(60) – 400(6)cos(60) – 864(7.8)cos(60)
N2 = 439 N
Ff = 439= u N1
U = 440 / 1264 = 0.3481