Answer:
I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).
The moment of inertia about the center of a sphere is 2 / 5 M R^2.
By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is I = 2/5 M R^2 + M R^2 = 7/5 M R^2
I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2
The spring constant is 181.0 N/m
Explanation:
We can solve the problem by applying the law of conservation of energy. In fact, the elastic potential energy initially stored in the compressed spring is completely converted into gravitational potential energy of the dart when the dart is at its maximum height. Therefore, we can write:

where the term on the left represents the elastic potential energy of the spring while the term on the right is the gravitational potential energy of the dart at maximum height, and where
k is the spring constant of the spring
x = 2.08 cm = 0.0208 m is the compression of the spring
m = 12.3 g = 0.00123 kg is the mass of the dart
is the acceleration due to gravity
h = 3.25 m is the maximum height of the dart
Solving for k, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
Explanation:
I will GUESS that we're supposed to be looking at a plot of a position in time.
IF that is the case.
THEN the answer would be Point B because it has the steepest slope.
Answer:
<em>1.Magnetic Force - Used in cranes to separate metal junk from junkyards.</em>
<em>2.Frictional Force- Helps us to walk.</em>
The correct answer is:
<span>B) orange, yellow, green, blue
the energy of the photons of light is directly proportional to the frequency of the light. This means that the lower the frequency, the lower the energy, and the higher the frequency, the greater the energy.
Therefore, the order in increasing energy is exactly the same as the order in increasing frequency, which is:
</span><span>
orange, yellow, green, blue </span>