The number of significant figures within a number are the amount digits that are required to specify a number to a certain degree of accuracy. In the number, 0.0645 g, the 6 is the most significant figure and 4 is the second most significant figure. Therefore, rounding to two significant figures yields 0.064g.
Missing question:
Suppose Gabor, a scuba diver, is at a depth of 15 m. Assume that:
1. The air pressure in his air tract is the same as the net water pressure at this depth. This prevents water from coming in through his nose.
2. The temperature of the air is constant (body temperature).
3. The air acts as an ideal gas.
4. Salt water has an average density of around 1.03 g/cm^3, which translates to an increase in pressure of 1.00 atm for every 10.0 m of depth below the surface. Therefore, for example, at 10.0 m, the net pressure is 2.00 atm.
T = 37°C = 310 K.
p₁ = 2,5 atm = 253,313 kPa.
p₂ = 1 atm = 101,325 kPa.
Ideal gas law: p·V = n·R·T.
n₁ = 253,313 kPa · 6 L ÷ 8,31 J/mol·K · 310 K.
n₁ = 0,589 mol.
n₂ = 101,325 kPa · 6 L ÷ 8,31 J/mol·K · 310 K.
n₂ = 0,2356 mol.
Δn = 0,589 mol - 0,2356 mol = 0,3534 mol.
Answer:
Explanation:
The relative massive alpha particles could go through the gold foil without being deviated of their trajectory or only small deviations due to the uniformity distribution positive charge of the protons.
Answer:
to simplify the number by using fewer digits
Explanation: