<h3><u>Answer</u>;</h3>
1.0875 x 10-2 atm
<h3><u>Explanation;</u></h3>
2O3(g) → 3O2(g)
rate = -(1/2)∆[O3]/∆t = +(1/3)∆[O2)/∆t
The average rate of disappearance of ozone ... is found to
be 7.25 × 10–3 atm over a certain interval of time.
This means (ignoring time)
∆[O3]/∆t = -7.25 × 10^–3 atm
(it is disappearing, thus the negative sign)
rate = -(1/2)∆[O3]/∆t
rate = -(1/2)*(-7.25 × 10^–3 atm)
= 3.625 × 10^–3 atm
Now use the other part of the expression:
rate = +(1/3)∆[O2)∆t
3.625 × 10–3 atm = +(1/3)∆[O2)/t
∆[O2)/∆t = (3)*(3.625× 10^–3 atm)
= 1.0875 x 10-2 atm over the same time interval
Answer:
B. liquid to gas
Explanation:
Matter exists in 3 different states:
- Solid: in solids, particles in the substance are tightly bond to each other through strong intermolecular forces. Therefore, they can only vibrate around their fixed position, but they cannot move freely: as a result, the distance between the particles is the smallest among the 3 states of matter.
- Liquid: in a liquid, particles are able to slide past each other, however there are still intermolecular forces keeping them not too far from each other. As a result, in liquids, particles are on average more distance from each other compared to solids.
- Gas: in a gas, particles are completely free to move, as the intermolecular forces between them are negligible. As a result, in gases, the distance between molecules is the greatest, compared with solids and liquids.
Therefore, the phase changes in which the average distance between molecules increases is:
B. liquid to gas
Answer: A volume of 455 mL from 0.550 M KBr solution can be made from 100.0 mL of 2.50 M KBr.
Explanation:
Given:
= ?,
= 0.55 M
= 100.0 mL,
= 2.50 M
Formula used to calculate the volume of KBr is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that a volume of 455 mL from 0.550 M KBr solution can be made from 100.0 mL of 2.50 M KBr.
The correct answer among the choices is option C. The ion that is part of all nucleic acids is phosphoric acid. Nucleic acids are large biomolecules that is important for all life forms. DNA and RNA are nucleic acids. These biomolecules are made from monomers called nucleotides. Each monomer is composed of 5 carbon sugar, a nitrogeneous base and a phosphate group.
Answer :
The correct answer for primary component of phosphate buffer at pH = 7.4 is H₂PO₄⁻ and HPO₄²⁻ .
<u>Buffer solution :</u>
It is a solution of mixture of weak acid and its conjugate base OR weak base and its conjugate acid . It resist any change in solution when small amount of strong acid or base is added .
<u>Capacity of a good buffer : </u>
A good buffer is identified when pH = pKa .
From Hasselbalch - Henderson equation which is as follows :
![pH = pka + log \frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=pH%20%3D%20pka%20%2B%20log%20%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If [A⁻] = [HA] ,
pH = pka + log 1
pH = pKa
This determines that if concentration of weak acid and its conjugate base are changed in small quantity , the capacity of buffer to maintain a constant pH is greatest at pka . If the amount of [A⁻] or [HA] is changed in large amount , the log value deviates more than +/- 1M and hence pH .
Hence Buffer has best capacity at pH = pka .
<u>Phosphate Buffer : </u>
Phosphate may have three types of acid-base pairs at different pka ( shown in image ).
Since the question is asking the pH = 7.4
At pH = 7.4 , the best phosphate buffer will have pka near to 7.4 .
If image is checked the acid - base pair " H₂PO₄⁻ and HPO₄²⁻ has pka 7.2 which is near to pH = 7.4 .
Hence we can say , the primary chemical component of phosphate buffer at pH = 7.4 is H₂PO₄⁻ and HPO₄²⁻ .