That's a ketone's functional group :)
Answer:
0.07172 L = 7.172 mL.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.0 atm, Standard P).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 3.2 x 10⁻³ mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 273 K, Standard T).
<em>∴ V = nRT/P =</em> (3.2 x 10⁻³ mol)(0.0821 L.atm/mol.K)(273 K)/(1.0 atm) = <em>0.07172 L = 7.172 mL.</em>
"if it is tested in a controlled setting with repeated results" is the statement among the choices given in the question that best describes that can possibly make this scientific claim valid. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer has helped you.<span>
</span>
Answer:
5=C, every action has an equal or opposite reaction,
6=B, since it has less air drag and more force exerted on it
7= You're correct
The termination step of the free-radical chlorination of methane is the most stable one among all three steps.
The free-radical substitution reaction between chlorine and methane features three major steps:
Initiation, during which chlorine molecules undergo homolytic fission to produce chlorine free radicals. Ultraviolet radiations are typically applied to supply the energy required for breaking the chlorine-chlorine single bonds. The initiation step is thus <em>endothermic</em>.
Propagation, a process in which chlorine free radicals react with methane molecules and remove a hydrogen atom from the alkane to produce hydrogen chloride and an alkyl radical e.g., . The carbon-containing free radical would react with chlorine molecules to produce chloromethane and yet another chlorine free radical. This process can well repeat itself to chlorinate a significant number of methane molecules.
Termination. Free radicals combine to produce molecules. For example, two chlorine free radicals would combine to produce a chlorine molecule, whereas two alkyl free radicals would combine to produce an alkane with two-carbon atoms in its backbone.
Chemical processes that increase the stability of a substance reduces its chemical potential energy. Energy conserves, thus such processes would also release energy equal to the potential energy lost in quantity. Free radicals are unstable and- as seen in the propagation step- compete readily with neutral molecules for their electrons. The propagation step keeps the number of free radicals constant and is therefore more exothermic than the initiation step. The termination step reduces the number of free radicals, increase the stability of the system by the greatest extent, and is therefore the most exothermic step among the three.