Answer: D
Explanation: there is less light at that point.
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A
Answer:
I think A
Explanation:
because it dosn't have enough tools
Answer:
Explanation:
Let h be the height .
initial velocity in first case u = 0
final velocity v = 6 m /s
acceleration due to gravity g = 9.8 m /s²
v² = u² + 2 g h
6² = 0 + 2 x 9.8 x h
h = 1.837 m .
For second case u = 3 m /s
v² = u² + 2 gh
= 3² + 2 x 1.837 x 9.8
= 9 + 36
= 45 m
v = 6.7 m /s