The answer should be E.the total number of protons and neutrons in the nucleus
Answer:
The molarity (M) of the following solutions are :
A. M = 0.88 M
B. M = 0.76 M
Explanation:
A. Molarity (M) of 19.2 g of Al(OH)3 dissolved in water to make 280 mL of solution.
Molar mass of Al(OH)3 = Mass of Al + 3(mass of O + mass of H)
= 27 + 3(16 + 1)
= 27 + 3(17) = 27 + 51
= 78 g/mole
= 78 g/mole
Given mass= 19.2 g/mole


Moles = 0.246

Volume = 280 mL = 0.280 L

Molarity = 0.879 M
Molarity = 0.88 M
B .The molarity (M) of a 2.6 L solution made with 235.9 g of KBr
Molar mass of KBr = 119 g/mole
Given mass = 235.9 g

Moles = 1.98
Volume = 2.6 L


Molarity = 0.762 M
Molarity = 0.76 M
The outermost electrons of the atom are either lost or gained by one of the atoms to the other. therefore the atom gains negative charge when gaining and positive charge when losing
Answer:
4000 L
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial volume (V1) = 2000 L.
Initial temperature (T1) = 100 K.
Initial pressure (P1) = 100 kPa.
Final temperature (T2) = 400 K.
Final pressure (P2) = 200 kPa.
Final volume (V2) =..?
Step 2:
Determination of the new volume of the gas.
The new volume of the gas can be obtained by using the general gas equation as follow:
P1V1/T1 = P2V2/T2
100 x 2000/100 = 200 x V2/400
Cross multiply to express in linear form.
100 x 200 x V2 = 100 x 2000 x 400
Divide both side by 100 x 200
V2 = (100 x 2000 x 400)/(100 x 200)
V2 = 4000 L
Therefore, the new volume of the gas is 4000 L
Answer:
It is longer than a solar eclipse