<u>Answer:</u> The final temperature of the gas is -220.6°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:
![P_1=6atm\\T_1=-33^oC=[273-33]K=240K\\P_2=1.31atm\\T_2=?](https://tex.z-dn.net/?f=P_1%3D6atm%5C%5CT_1%3D-33%5EoC%3D%5B273-33%5DK%3D240K%5C%5CP_2%3D1.31atm%5C%5CT_2%3D%3F)
Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the final temperature of the gas is -220.6°C
Answer:
C. 1 cubic foot of loose sand
Explanation:
For many objects having equal volume , surface area will be maximum
of the object which has spherical shape .
But when a sphere is broken into tiny small spheres , total surface area of all the small spheres will be more than surface area of big sphere .
Hence among the given option , surface area of loose sand will have greatest surface area . Loose sand is equivalent to small spheres .
In order top top to bottom
F
F
T
T
F
F
T
T
My answer will be B and D
have a nice day buddy but I can't help you