Carbons starting from the left end:
- sp²
- sp²
- sp²
- sp
- sp
Refer to the sketch attached.
<h3>Explanation</h3>
The hybridization of a carbon atom depends on the number of electron domains that it has.
Each chemical bond counts as one single electron domain. This is the case for all chemical bonds: single, double, or triple. Each lone pair also counts as one electron domain. However, lone pairs are seldom seen on carbon atoms.
Each carbon atom has four valence electrons. It can form up to four chemical bonds. As a result, a carbon atom can have up to four electron domains. It has a minimum of two electron domains, with either two double bonds or one single bond and one triple bond.
- A carbon atom with four electron domains is sp³ hybridized;
- A carbon atom with three electron domains is sp² hybridized;
- A carbon atom with two electron domains is sp hybridized.
Starting from the left end (H₂C=CH-) of the molecule:
- The first carbon has three electron domains: two C-H single bonds and one C=C double bond; It is sp² hybridized.
- The second carbon has three electron domains: one C-H single bond, one C-C single bond, and one C=C double bond; it is sp² hybridized.
- The third carbon has three electron domains: two C-C single bonds and one C=O double bond; it is sp² hybridized.
- The fourth carbon has two electron domains: one C-C single bond and one C≡C triple bond; it is sp hybridized.
- The fifth carbon has two electron domains: one C-H single bond and one C≡C triple bond; it is sp hybridized.
Answer:
The common thing is the compound water
Explanation:
in condensation h2O is expelled while in hydrolysis water is used or added
The correct answer to this question is Water will move from left to right.
Water tends to move over to the side where there is less water.
For example,
if there's less water on the RIGHT side,
then the water will tend to move from left, to RIGHT. It <span>shows more solute molecules on the right, so water will move to this side by osmosis. I think it is to do with entropy and the tendency for systems to move to equilibrium if there is an increase in entropy</span>
Answer: The half-reactions represents reduction are as follows.
Explanation:
A half-reaction where addition of electrons take place or a reaction where decrease in oxidation state of an element takes place is called reduction-half reaction.
For example, the oxidation state of Cr in
is +6 which is getting converted into +3, that is, decrease in oxidation state is taking place as follows.

Similarly, oxidation state of Mn in
is +7 which is getting converted into +2, that is, decrease in oxidation state is taking place as follows.

Thus, we can conclude that half-reactions represents reduction are as follows.