Answer:
NaNO3 (solubility = 89.0 g/100 g H2O)
Explanation:
The solubility of a specie is the amount of solute that will dissolve in one litre of the solvent. Solubility is usually expressed in units of molarity.
Now let us calculate the molarity of the NaNO3 (solubility = 89.0 g/100 g H2O)
Molar mass of NaNO3= 23+14+3(16)= 85gmol-1
Mass of solute=89.0g
Amount of solute= mass of NaNO3/molar mass of NaNO3
Amount of solute= 89.0g/85.0 gmol-1
= 1.0moles of NaNO3
Note that 100g of water=100cm^3 of water.
If 1.0 moles of NaNO3 dissolve in 100cm^3 or water therefore,
x moles of NaNO3 will dissolve in 1000cm^3 of water
x= 1.0 × 1000/ 100
x= 10.0 moles of NaNO3
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
It is going to be reaction of neutralization, and water and salt will be formed. If acid and base are strong, the reaction of the solution should become neutral.
Total vapor pressure can be calculated using partial vapor pressures and mole fraction as follows:

Here,
is mole fraction of A,
is mole fraction of B,
is partial pressure of A and
is partial pressure of B.
The mole fraction of A and B are related to each other as follows:

In this problem, A is hexane and B is octane, mole fraction of hexane is given 0.580 thus, mole fraction of octane can be calculated as follows:

Partial pressure of hexane and octane is given 183 mmHg and 59.2 mmHg respectively.
Now, vapor pressure can be calculated as follows:

Putting the values,

Therefore, total vapor pressure over the solution of hexane and octane is 131 mmHg.
Answer:
c. liquid
Explanation:
because the are not very close if the said very closely packed together it would have been a solid