Molar mass of H₂ = 1.008 × 2 g/mol = 2.016 g/mol <span>
Molar mass of I₂ =
126.9 × 2 g/mol = 253.8 g/mol </span><span>
Molar mass of HI = (1.008 + 126.9) g/mol = 127.9 g/mol
H₂(g) + I₂(g) → 2HI </span><span>
Mole ratio H₂ : I₂ : HI = 1 : 1 : 2 </span><span>
Then the initial number of moles of H₂ = (3.35 g) / (2.016 g/mol) = 1.662 mol </span><span>
Initial number of moles of I₂ = (50.75 g) / (253.8 g/mol) = 0.2000 mol <
1.662 mol </span><span>
Hence, I₂ is the
limiting reactant (limiting reagent). </span><span>
Number of moles of I₂ reacted = 0.2000 mol </span><span>
Number of moles of HI reacted = (0.2000 mol) × 2 = 0.4000 mol
<span>Mass of HI reacted = (127.9 g/mol) × (0.4000 mol) = 51.16 g</span></span>
Answer:
h =12.9 w/m2 k
Explanation:
we know that thermal conductivity of air K at 0 degree celcius = 0.024 w/mk
T_S = 80 Degree celcius
temperature gradient = -43 degree C/mm = - 43*1000 / m
by fourier law


q = 1032 watt/m2
we know that from newton's law
q = h (T_s - T_∞)
1032 = h*(80 - 0)
h =12.9 w/m2 k
Answer:
B = 32.17 x 10^-8 Tesla
u = 8.24 x 10^-8 J/m^3
P/A = 24.72 W/m^2
Explanation:
E = 96.5 V/m
velocity of light, c = 3 x 10^8 m/s
Let B be the magnetic field.
The relation between the electric field strength and the magnetic field strength is given by
B = E / c = 96.5 / (3 x 10^8) = 32.17 x 10^-8 Tesla
Let u be the energy density.


u = 8.24 x 10^-8 J/m^3
Let Power flow per unit area is
P/A = u x c = 8.24 x 10^-8 x 3 x 10^8 = 24.72 W/m^2
Momentum = mass x acceleration
5 x 2 = 10 kg. m/s