Explanation:
From the knowledge of law of multiple proportions,
mass ratio of S to O in SO:
mass of S : mass of O
= 32 : 16
= 32/16
= 2/1
mass ratio of S to O in SO2:
= mass of S : 2 × mass of O
= 32 : 2 × 16
= 32/32
= 1/1
ratio of mass ratio of S to O in SO to mass ratio of S to O in SO2:
= 2/1 ÷ 1/1
= 2
Thus, the S to O mass ratio in SO is twice the S to O mass ratio in SO2.
Molten barium chloride is separeted
into two species :
BaCl₂(l) → Ba(l) + Cl₂(g),
but first ionic bonds in this salt are separeted because of heat:
BaCl₂(l) → Ba²⁺(l) + 2Cl⁻(l).
Reaction of reduction at cathode(-): Ba²⁺(l) + 2e⁻ → Ba(l).
Reaction of oxidation at anode(+): 2Cl⁻(l) → Cl₂(g) + 2e⁻.
<span>The anode is positive and the cathode is negative.</span>
Answer:
Original temperature (T1) = - 37.16°C
Explanation:
Given:
Gas pressure (P1) = 2.75 bar
Temperature (T2) = - 20°C
Gas pressure (P2) = 1.48 bar
Find:
Original temperature (T1)
Computation:
Using Gay-Lussac's Law
⇒ P1 / T1 = P2 / T2
⇒ 2.75 / T1 = 1.48 / (-20)
⇒ T1 = (2.75)(-20) / 1.48
⇒ T1 = -55 / 1.48
⇒ T1 = - 37.16°C
Original temperature (T1) = - 37.16°C
Aromatic compounds are compounds that contain carbon-carbon multiple bonds.
The question did not mention that a heteroatom is present in the compound so we can assume that there is none of such. In that case, the compound contains only hydrogen and carbon.
So,
(CH)n = 78
where n is the number of each atom present.
(12 +1)n = 78
n = 78/13
n = 6
The molecular formula of the compound is C6H6
When C6H6 is treated with .conc.HNO3/conc.H2SO4 the compound shown in image 1 is formed. The reaction occurs at the C-C multiple bond.
When C6H6 is reacted with chlorine in the presence of sunlight, hexachlorobenzene (shown in image 2 attached) is formed.
brainly.com/question/24305135