Answer:
Q(h=200)=0.35W
Q(h=3000)=5.25W
Explanation:
first part h=200W/Km^2
we must use the convection heat transfer equation for the chip
Q=hA(Ts-T∞)
h=
convective coefficient=200W/m2 K
A=Base*Leght=5mmx5mm=25mm^2
Ts=temperature of the chip=85C
T∞=temperature of coolant=15C
Q=200x2.5x10^-5(85-15)=0.35W
Second part h=3000W/Km^2
Q=3000x2.5x10^-5(85-15)=5.25W
Problem-Solving Tip: When cutting an FBD through an axial member, assume that the internal force is tension and draw the force arrow directed away from the cut surface. If the computed internal force value turns out to be a positive number, then the assumption of tension is confirmed.
Answer:
The three phase full load secondary amperage is 2775.7 A
Explanation:
Following data is given,
S = Apparent Power = 1000 kVA
No. of phases = 3
Secondary Voltage: 208 V/120 V <em>(Here 208 V is three phase voltage and 120 V is single phase voltage) </em>
<em>Since,</em>
<em />
<em />
<em />

The formula for apparent power in three phase system is given as:

Where:
S = Apparent Power
V = Line Voltage
I = Line Current
In order to calculate the Current on Secondary Side, substituting values in above formula,

Answer:
a) The maximum possible heat removal rate = 2.20w
b) Fin length = 37.4 mm
c) Fin effectiveness = 89.6
d) Percentage increase = 435%
Explanation:
See the attached file for the explanation.