<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Choice-C is a correct statement.
Answer: A Bowling Ball
Explanation:
A body possess kinetic energy due to virtue of its motion. It depends on the mass of the body and the speed with which it is travelling.
K.E = 0.5 mv²
K.E. ∝ m
It is given that the marble, bowling ball, basketball and baseball all are rolling with the same speed. This means that the greatest energy would be possessed by the body having greatest mass.
On an average the mass of a marble is about 50 g, mass of a bowling ball is 750 g, mass of baseball is 150 g and mass of basketball is 600 g. Since the mass of a Bowling ball is the greatest, it would possess the greatest kinetic energy.
Explanation:
a) 
where
is the distance of the mass
from the axis of rotation. When the axis of rotation is placed at the end of the rod, the moment of inertia is due only to one mass. Therefore,

b) When the axis of rotation is placed on the center of the rod, the moment is due to both masses and the radius r is 1.5 m. Therefore,
