Answer:
-196 kJ
Explanation:
By the Hess' Law, the enthalpy of a global reaction is the sum of the enthalpies of the steps reactions. If the reaction is multiplied by a constant, the value of the enthalpy must be multiplied by the same constant, and if the reaction is inverted, the signal of the enthalpy must be inverted too.
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
S(s) + O₂(g) → SO₂(g) ΔH = -297 kJ (inverted and multiplied by 2)
2S(s) + 3O₂(g) → 2SO₃(g) ΔH = -790 kJ
2SO₂(g) → 2S(s) + 2O₂(g) ΔH = +594 kJ
-------------------------------------------------------------
2S(s) + 3O₂(g) + 2SO₂(g) → 2SO₃(g) + 2S(s) + 2O₂(g)
Simplifing the compounds that are in both sides (bolded):
2SO₂(g) + O₂(g) → 2SO₃(g) ΔH = -790 + 594 = -196 kJ
Answer:
no it would be 2.5 mill your welcome
Explanation:
6 because all atomic numbers equal the number of electrons
49 neutrons in each nucleus.
<h3>Explanation</h3>
For each nucleus:
Mass number = Number of protons + Number of neutrons.
The atomic number of a nucleus is the same as its number of protons. The atomic number of the nucleus here is 31. There are 31 protons in each nucleus.
- Mass number = 80;
- Number of protons = Atomic number = 31;
- The number of neutrons is to be found.
Again,
Mass number = Number of protons + Number of neutrons.
80 = 31 + Number of neutrons.
Number of neutrons = 80 - 31 = 49.