Complete Question:
Football player A has a mass of 110 kg, and he is running down the field with a velocity of 2 m/s. Football player B has a mass of 120 kg and is stationary. What is the total momentum after the collision?
Answer:
Total momentum = 220 Kgm/s.
Explanation:
<u>Given the following data;</u>
For footballer A
Mass, M1 = 110kg
Velocity, V1 = 2m/s
For footballer B
Mass, M1 = 120kg
Velocity, V1 = 0m/s since he's stationary.
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
a. To find the momentum of A;

Momentum A = 220 Kgm/s.
b. To find the momentum of B;

Momentum B = 0 Kgm/s.
c. To find the total momentum of the two persons;
Substituting into the equation, we have;

<em>Total momentum = 220 Kgm/s. </em>
The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
Answer:
I think like 2024 or 25
Explanation:
Elon musk will probably go
Answer:
F = 63N
Explanation:
M= 1.5kg , t= 2s, r = (2t + 10)m and
Θ = (1.5t² - 6t).
magnitude of the resultant force acting on 1.5kg = ?
Force acting on the mass =
∑Fr =MAr
Fr = m(∇r² - rθ²) ..........equation (i)
∑Fθ = MAθ = M(d²θ/dr + 2dθ/dr) ......... equation (ii)
The horizontal path is defined as
r = (2t + 10)
dr/dt = 2, d²r/dt² = 0
Angle Θ is defined by
θ = (1.5t² - 6t)
dθ/dt = 3t, d²θ/dt² = 3
at t = 2
r = (2t + 10) = (2*(2) +10) = 14
but dr/dt = 2m/s and d²r/dt² = 0m/s
θ = (1.5(2)² - 6(2) ) = -6rads
dθ/dt =3(2) - 6 = 0rads
d²θ/dt = 3rad/s²
substituting equation i into equation ii,
Fr = M(d²r/dt² + rdθ/dt) = 1.5 (0-0)
∑F = m[rd²θ/dt² + 2dr/dt * dθ/dt]
∑F = 1.5(14*3+0) = 63N
F = √(Fr² +FΘ²) = √(0² + 63²) = 63N