Using the law of conservation of momentum
m1u1+m2u2=m1v1+m2v2
Where m1 is mass of first object
m2 is mass of second object
u1 and u2 are initial velocities of object 1 and 2 respectively
v1 and v2 are final velocities of object 1 and 2 respectively
Here, they are moving as a system after collision. Thus they will posses same final velocity
m1u1 +m2u2=v(m1+m2)
Substituting values
600*4+0=v(600+400)
2400=v*1000
v=2.4 m/s
Now momentum of system
p=Mv
p=(600+400)*2.4
p=1000*2.4
Therefore p=2400 kg m/s
Hope this helps :)
Answer:
cell
Explanation:
here are all the symbols-
hope this helps, take care and stay safe
Answer:
3.9 m/s
Explanation:
We are given that
Mass of car,m=
Initial velocity,u=0
Distance,s=5.9 m

Average friction force,f=
We have to find the speed of the car at the bottom of the driveway.
Net force,
Where 
Acceleration,


v=3.9 m/s
Answer:
the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Explanation:
Given;
height of the cliff, h = 210 m
initial horizontal velocity of the cannonball, Ux = 50 m/s
initial vertical velocity of the cannonball, Uy = 0
The time for the cannonball to reach the ground is calculated as;
The horizontal distance covered by the cannonball before it hits the ground is calculated as;

Therefore, the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
A mountain range because an ocean ridge is an underwater mountain hope this helps you