As an airplane moves through the air, its wings cause changes in the
speed and pressure of the air moving past them. These changes result in
the upward force called lift.
The Bernoulli principle states that an increase in the speed of a fluid
occurs simultaneously with a decrease in the pressure exerted by the
fluid.
A wing is shaped and tilted so the air moving over it moves faster than
the air moving under it. As air speeds up, its pressure goes down. So
the faster-moving air above exerts less pressure on the wing than the
slower-moving air below. The result is an upward push on the wing—lift!
The diffusion coefficient of the gas is proportional to the average rate of thermal motion of the molecules.
the average velocity is inversely proportional to the square root of the molar mass
so
The gas diffusion rate is inversely proportional to the square root of its molecular weight.
In thermodynamics, work of a system at constant pressure conditions is equal to the product of the pressure and the change in volume. It is expressed as follows:
W = P(V2 - V1)
W = 1.3x10^5 (2x6 - 6 )
<span>W = 780000 J
</span>
Hope this answers the question. Have a nice day.
The right answer for the question that is being asked and shown above is that: "A.tectonic activity concentrated in certain areas." A piece of evidence did Alfred Wegener use to develop the theory of continental drift is that <span>A.tectonic activity concentrated in certain areas</span>