1.) because then people can evacuate the area in the path<span> of the hurricane.
2.) </span><span>At higher altitudes, water vapor starts to condense into clouds and rain, releasing heat that warms the surrounding air, Which makes it rise as well. Warmer waters feed more energetic storms.
3.) </span> <span>A hurricane starts off as a series of thunderstorms which intensify as it moves over the warm and humid sea. The humidity is at a constant level and so it continues to grow over the sea. Any kind of decrease or increase in humidity can change the strength of a hurricane.
4.) </span><span>Actually, tropical cyclones need weak winds. If the atmospheric winds are even remotely strong, they will act to cut back the system and prevent the convection from wrapping around the center.
</span><span>Annndd...
5.) That hard to tell, it could be too much. Though I am going to go with yes. Cyclones need weak winds and good amount humidity.</span><span>
</span>
metamorphic, sedimentary, igneous
Answer:
350 F to 100 F it take approx 87.33 min
Explanation:
given data
oven = 350◦F
cooling rack = 70◦F
time = 30 min
cake = 200◦F
solution
we apply here Newtons law of cooling
= -k(T-Ta)
=
(T(t) -Ta)
=
= -k(T-Ta)
-ky
= -ky
T(t) -Ta = (To -Ta)
T(t) = Ta+ (To -Ta)
put her value for time 30 min and T(t) = 200◦F and To =350◦F and Ta = 70◦F
so here
200 = 70 + ( 350 - 70 ) 
k = 0.025575
so here for T(t) = 100F
100 = 70 + ( 350 - 70 ) 
time = 87.33 min
so here 350 F to 100 F it take approx 87.33 min
It helps because it's being transported blah blah whatever the last person said when you first asked this question
Answer:
z1/z2
Explanation:
we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.
using the boltzman distribution the probability of finding a particle in energy state

we have
gi to be degeneration of the ith state
ei to be energy of ith state
summation

We have R to be equal to
