H₃O⁺ =
×
OH =
×
pH = 2.22
pOH = 11.78
<h3>What is pH?</h3>
The term pH, which originally stood for "potential of hydrogen" (or "power of hydrogen"), is used in chemistry to describe how acidic or basic an aqueous solution is. Lower pH values are summarized for acidic solutions (solutions with higher H+ ion concentrations) than for basic or alkaline solutions.
The pH scale is inversely indicates to the concentration of hydrogen ions in the solution and is logarithmic.
⇒pH = -log(
)
Acidic solutions are those with a pH below 7, and basic solutions are those with a pH above 7, at a temperature of 25 °C (77 °F). At this temperature, solutions with a pH of 7 are neutral (e.g. pure water). The pH neutrality relies on temperature, falling below 7 if the temperature rises above 25 °C.
Learn more about pH
brainly.com/question/12609985
#SPJ4
The equation for the reaction is:
C₄H₈O₂ + C₂H₅OH = C₆H₁₂O₂ + H₂O
Now you see that the number of the moles of butanoic acid
and etyl butyrate is equal in
the reaction. That means;
number of moles of C₄H₈O₂ = number of moles of C₆H₁₂O₂
mass of C₄H₈O₂/ Molar mass of C₄H₈O₂ = mass of C₆H₁₂O₂/ molar mass of C₆H₁₂O₂
mass of C₆H₁₂O₂ = molar mass of C₆H₁₂O₂ x mass of C₄H₈O₂/ Molar mass of C₄H₈O₂
Now, assuming <span>100% yield, the mass
of ethyl butyrate produced is: </span>
<span>= 7.45/88.11 x 116.16</span>
<span>=9.82g</span>
<span>Thus, the theoretical yield of ethyl butyrate is 9.82g.</span>
Answer:
The number of Chlorine atoms in the product is 2.
Explanation:
The law of conservation of mass states that matter can neither be created nor destroyed in a chemical reaction.
The reactants contain one chlorine molecule(
) which has two chlorine atoms.
Then, according to law of conservation of matter, the product must contain two chlorine atoms.
Cyclohexane - cyclic hydrocarbon with 6 carbon atoms.
2 methyl groups (-CH3) on carbon atom number 1
Hope it helped!
Answer:
Potential energy is transformed to kinetic energy
Explanation:
Once a river is dammed it changes its physical and chemical structure. Damming also changes the biological communities associated with the river and its floodplain. When water is kept behind dams, seasonal flow patterns are usually lost.
A hydroelectric dam converts the potential energy stored in a water reservoir behind a dam to mechanical energy—mechanical energy is also known as kinetic energy. As the water flows down through the dam its kinetic energy is used to turn a turbine.