Answer:
Hey mate I shall not tell you the answer I shall explain it to you after this if still you can't understand then say
Explanation:
Derive v = u + at by Graphical Method. Consider the velocity – time graph of a body shown in the below Figure
Derive s = ut + (1/2) at2 by Graphical Method. Velocity so time graph to derive the equations of motion.
Derive v2 = u2 + 2as by Graphical Method. Velocity–Time graph to derive the equations of motion.
I hope you understand now
enjoy your day
#Captainpower :)❤❤
If the velocity is constant then the acceleration of the object is zero.

Thus when we apply the equation

It remains

or equivalent
ANSWER

EXPLANATION
Parameters given:
Mass of the student, M = 70 kg
Mass of the textbook, m = 1 kg
Distance, r = 1 m
To find the gravitational force acting between the student and the textbook, apply the formula for gravitational force:

where G = gravitational constant
Therefore, the gravitational force acting between the student and the textbook is:

That is the answer.
Answer:
23 m/s downward
__________________________________________________________
<em>Taking the downward direction as positive</em>
<u>We are given:</u>
Initial velocity of the marble (u) = 0 m/s
Time interval (t) = 2.3 seconds
Final velocity (v) = x m/s
<u>Solving for the Final velocity:</u>
<u>Acceleration of the Marble:</u>
We know that gravity will make the marble accelerate at a constant acceleration of 10 m/s
<u>Final velocity:</u>
v = u + at [First equation of motion]
x = 0 + (10)(2.3) [replacing the given values]
x = 23 m/s
Hence, after 2.3 seconds, the marble will move at a velocity of 23 m/s in the downward direction
Answer:
Explanation: Determine the gravitational acceleration. ...
Decide whether the object has an initial velocity. ...
Choose how long the object is falling. ...
Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt