B. velocity at position x, velocity at position x=0, position x, and the original position
In the equation
=
+2 a x (x - x₀)
= velocity at position "x"
= velocity at position "x = 0 "
x = final position
= initial position of the object at the start of the motion
False, There are no genetics that can save you from constant overeating and there are no genetics that can prevent you from working out, at least to your possible extent.
Since you are looking for the speed, you need to rearrange the formula which is f = speed / wavelength. That should give you speed = f (wavelength.) All you need to do next is to substitute the value to the following equation. speed = 250 Hz (6.0m) that should leave you with 1500 m/s which is very fast.
Answer:
<em>0.97c</em>
<em></em>
Explanation:
From the relativistic equation for length contraction, we have
= 
where
is the final length of the object
is the original length of the object before contraction
β = 
where v is the speed of the object
c is the speed of light in free space = 3 x 10^8 m/s
The equation can be re-written as
/
= 
For the length to contract to one-fourth of the proper length, then
/
= 1/4
substituting into the equation, we'll have
1/4 = 
substituting for β, we'll have
1/4 = 
squaring both side of the equation, we'll have
1/16 = 1 - 
= 1 - 1/16
= 15/16
square root both sides of the equation, we have
v/c = 0.968
v = <em>0.97c</em>