5 electrons
Boron atomic number 5 has five electrons in its ground state.
Commonly Boron will lose 3 electrons leaving 2 electrons in its most common ionic form.
Explanation:
The atomic number gives the number of protons. Protons which have a positive charge are balanced by an equal number of electrons in a neutral atom.
Boron number 5 has five protons and therefore as a neutral atom also has five electrons.
Boron has an electron configuration of
1s22s22p1
The most stable electron configuration for Boron is
1s2
+ 3 charges. By losing three electrons Boron can achieve the stable electron structure of Helium
Brainliest? :D
Data:
p (pressure) = 81.8 kPa = 81.8*10³ Pa ≈ 8.07 atm
v (volume) = ? (in L)
n (number of mols) = 0.352 mol
R (Gas constant) = 0.082 (atm*L/mol*K)
T (temperature) = 25ºC converting to Kelvin, we have:
TK = TC + 273 → TK = 25 + 273 → TK = 298
Formula:

Solving:




Hello!
The basic equations to solve this is
pH = -log[H+]
pOH = -log[OH-]
pH + pOH = 14
------------------------------------------------------------------------------------------------------
Find pHpH = -log(1 * 10^-1)
pH = 1
------------------------------------------------------------------------------------------------------
Find pOH1 + pOH = 14
pOH = 13
------------------------------------------------------------------------------------------------------
Find OH-[OH-] = 10^(-pOH)
[OH-] = 1 * 10^-13mo/L
The answer is
![[OH-] = 1 * 10^{-13} mol/L](https://tex.z-dn.net/?f=%5BOH-%5D%20%3D%201%20%2A%2010%5E%7B-13%7D%20mol%2FL)
Hope this helps!
Answer:

Explanation:
The amount adsorbed (solute) is the acetic acid, and the adsorbent is the activated charcoal. The mass of the adsorbent is 10 g.
So, we need to calculate the mass of the acetic acid as follows:

Where:
n: is the number of moles = C*V
M: is the molecular mass = 60.052 g/mol
C: is the final concentration of the acid = 0.5*0.2 mol/L = 0.10 mol/L
V: is the volume = 50 ml = 0.050 L

Now, the amount of solute adsorbed per gram of the adsorbent is:

Therefore, the amount of solute adsorbed per gram of the adsorbent is 0.03 g/g.
I hope it helps you!