Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>
Answer:
Faster particles bump into slower particles ( A )
Explanation:
Thermal conduction in a solid involves the microscopic collision of particles in the solid and this particles are made up of electrons, molecules and atoms. the collisions occur when faster particles collide with slower particles and this happens in a disorganized manner.
when cannot say for sure in what direction each of the particles is moving but there is surely collisions between particles which in turn results to transfer of kinetic and potential energies
The two forces should be equal therefore:
2.10 * Fa = Fa + 2 * F * cos 18
simplifying the right side:
2.10 * Fa = Fa + 1.902 * F
1.10 Fa = 1.902 F
<span>F / Fa = 0.578</span>