Answer:
If transpiration didn't take place water would still be able to enter the roots of a plant
Explanation:
transpiration is the process of water leaving from living organisms to the atmosphere, therefore, if transpiration didn't occur the water would not transpire to the atmosphere and would remain in the root but water absorption would not change because it is a biological need for the living organism as such
Answer:
just search up a ven-diagram and then try to draw it or trace it then use it for ur question
Explanation:
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
False, we lack cell walls whereas they have cell walls.