Answer:
speed of golf ball is 1.15 ×
m/s
and % of uncertainty in speed = 2.07 ×
%
Explanation:
given data
mass = 45.9 gram = 0.0459 kg
speed = 200 km/hr = 55.5 m/s
uncertainty position Δx = 1 mm =
m
to find out
speed of the golf ball and % of speed of the golf ball
solution
we will apply here heisenberg uncertainty principle that is
uncertainty position ×uncertainty momentum ≥
......1
Δx × ΔPx ≥
here uncertainty momentum ΔPx = mΔVx
and uncertainty velocity = ΔVx
and h = 6.626 ×
Js
so put here all these value in equation 1
× 0.0459 × ΔVx = 
ΔVx = 1.15 ×
m/s
and
so % of uncertainty in speed = ΔV / m
% of uncertainty in speed = 1.15 ×
/ 55.5
% of uncertainty in speed = 2.07 ×
%
The final temperature of the tea cup is 100°C.
<h3>What is internal energy?</h3>
The Internal energy is the energy of a substance due to to the constant random motion of its particles.
The symbol for internal energy of a substance is U and it is measured in Joules.
ΔU = q + W
- W is the mechanical work.
In conclusion, the final temperature of the tea cup at room temperature of 24 °C which is heated until it has twice the internal energy is 100°C.
Learn more about internal energy at: brainly.com/question/24028630
#SPJ1
Answer:
Explanation:
Mob violence is never protected. Organizers are always careful about not letting things get out of hand. Not D
That remark sort of applies to C as well. Property destruction is never protected.
B is something assemblies are allowed to do. So B.
A falls into the same category as C and D. You may not like the fact that he/she is doing something illegal, but you can't take away their privacy.
Answer:
Because of heavy mass
Explanation:
When force acts on a body it tends to accelerate the body. The acceleration produced in the body depends on two things:
1). Magnitude of force
2). Mass of the body
F= ma
⇒ a = F/m
As the force exerted on earth and another object are the equal in magnitude but opposite in direction. This forces will accelerate the object toward the earth but can't accelerate the earth as earth has very high mass.
a = F/m
This force tends to accelerate the earth but but due to earth's inertia the earth does not accelerate.
Answer:
66.35m/s
Explanation:
Para resolver el ejercicio es necesario la aplicación de las ecuaciones de continuidad, que expresan que

From our given data we can lower than:


So using the continuity equation we have




Therefore the velocity at the exit end is 66.35m/s