Answer:
s_400 = 16.5 m
, s_700 = 29.4 m
Explanation:
The limit of the human eye's solution is determined by the diffraction limit that is given by the expression
θ = 1.22 λ / D
where you lick the wavelength and D the mediator of the circular aperture.
In our case, the dilated pupil has a diameter of approximately 8 mm = 8 10-3 m and the eye responds to a wavelength between 400 nm and 700 nm.
by introducing these values into the formula
λ = 400 nm θ = 1.22 400 10⁻⁹ / 8 10⁻³ = 6 10⁻⁵ rad
λ = 700 nm θ = 1.22 700 10⁻⁹ / 8 10⁻³-3 = 1.07 10⁻⁴ rad
Now we can use the definition radians
θ= s / R
where s is the supported arc and R is the radius. Let's find the sarcos for each case
λ = 400 nm s_400 = θ R
S_400 = 6 10⁻⁵ 275 10³
s_400 = 16.5 m
λ = 700 nm s_ 700 = 1.07 10⁻⁴ 275 10³
s_700 = 29.4 m
Because, they have a strong argument regarding it and, the judges, so it makes sense of what the society thinks, and what they are representing.
Answer:
0.25 m/s
Explanation:
This problem can be solved by using the law of conservation of momentum - the total momentum of the squid-water system must be conserved.
Initially, the squid and the water are at rest, so the total momentum is zero:

After the squid ejects the water, the total momentum is

where
is the mass of the squid
is the velocity of the squid
is the mass of the water
is the velocity of the water
Due to the conservation of momentum,

so

so we can find the final velocity of the squid:

and the negative sign means the direction is opposite to that of the water.