Answer:
B)
Explanation:
That the time period of which they stop.
Hi,
The correct answer is letter B.
The last group contains noble gases, while both along the top and along the bottom the elements on the right are non-metals.
That is because work requires energy. According to the law of conservation of energy, it cannot be created or destroyed. When doing work, energy change forms and gets transferred to the object until it is released.
for example, when you lift up an object and place it on a higher elevation, you transferred energy to it and gave it potential energy. The potential energy is transformed into kinetic energy when the object falls down, and if it hits a surface, the energy will scatter, vibrating the areas around it and producing sound.
Also, work= force X distance. The energy does not go away, but rather get changed into some other form of energy
Q: ken, 0.75 kg, moves toward a wall (his path normal to the wall) at 52 m/s. 13.0 ms after he touches the wall he pushes himself off in the opposite direction at 60 m/s. What is the magnitude of the average force the wall exerts on Ken during this rapid maneuver
Answer:
-6461.54 N
Explanation:
From Newton's Fundamental equation,
F = m(v-u)/t.................... Equation 1
Where F = Force exerted in sonic, m = mass of ken, v = final velocity, u = initial velocity, t = time.
Given: m = 0.75 kg, v = - 60 m/s (opposite direction), u = 52 m/s, t = 13 ms = 0.013 s
Substitute into equation 1
F = 0.75(-60-52)/0.013
F = 0.75(-112)/0.013
F = -84/0.013
F = -6461.54 N
Note: The negative sign tells that the force act in opposite direction to the initial motion of ken.
Hence the magnitude of the average force of the wall = -6461.54 N
Answer:
Explanation:
pressure decreases with increasing altitude. The pressure at any level in the atmosphere may be interpreted as the total weight of the air above a unit area at any elevation. At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels.