Answer:
I believe it's called qualitative
Explanation:
Answer:
The flow of energy from falling water to the steam is;
a) Mechanical → Mechanical → Electrical → Thermal → Thermal
Explanation:
1) Mechanical → Mechanical
The water in the pipe before it falls possesses potential energy which it converts into kinetic energy as it falls from height
2) Mechanical → Mechanical
The water falling from the pipe stream unto the turbine wheel transfers its kinetic (mechanical) energy due to its motion on to the turbine wheel to give the wheel rotational motion
3) Mechanical → Electrical
The kinetic (mechanical) energy from the rotating turbine wheel is converted into electrical energy in the electrical generator which transported through the electrical circuit
4) Electrical → Thermal
The electrical energy from the electric current is then converted into thermal energy as the current passes through the resistors in the heating filament
5) Thermal → Thermal
The heated filament transfers thermal energy to the the water in the beaker by conduction which raises the temperature of the water such that as the water acquires more thermal energy it turns into steam
Therefore, we have the flow of energy from the falling water to steam as follows;
1) Mechanical 2) Mechanical 3) Electrical 4) Thermal 5) Thermal
Given Information:
Mass of elephant = m = 750 kg
Height = h = 14.3 m
time = t = 30 seconds
Required Information:
Power needed to lift elephant = P = ?
Answer:
Power needed to lift elephant ≈ 3507 watts
Explanation:
As we know power is given by
P = PE/t
Where PE is the potential energy and t is the time
Potential energy is given by
PE = mgh
Where m is the mass of elephant, g is the gravitational acceleration and h is the height to lift the elephant.
PE = 750*9.81*14.3
PE = 105212.25 Joules
Therefore, the required power to lift the elephant is
P = PE/t
P = 105212.25/30
P ≈ 3507 watts
A light year is a unit of length that is used to espress distances that are astronomical. It is equivalent to 5.9 trillion miles or 9.5 quadrillion meters. Light year is defined by the distance a beam of light would travel in one year. One light year is equivalent to the distance that light would travel in vacuum on one Julian year or 365 days as defined by the IAU or the International Astronomical Union. So, one light year is traveled for 1 year here on Earth. So, in order to drive to the alpha centauri, you would take about 4.4 years to do so.