PH = -log[H+]
That is, pH is the negative logarithm of the hydrogen ion concentration.
pOH = -log[OH-]
pOH is the negative logarithm of the hydroxide ion concentration.
The correct answer to your question is a. The negative logarithm of the hydrogen ion concentration.
Mixing of pure orbitals having nearly equal energy to form equal number of completely new orbitals is said to be hybridization.
For the compound,
the electronic configuration of the atoms, carbon and hydrogen are:
Carbon (atomic number=6): In ground state= 
In excited state: 
Hydrogen (atomic number=1): 
All the bonds in the compound is single bond(
-bond) that is they are formed by head on collision of the orbitals.
The structure of the compound is shown in the image.
The Carbon-Hydrogen bond is formed by overlapping of s-orbital of hydrogen to p-orbital of carbon.
In order to complete the octet the required number of electrons for carbon is 4 and for hydrogen is 1. So, the electron in
of hydrogen will overlap to the 2p^{3}-orbital of carbon.
Thus, the hybridization of Hydrogen is
-hybridization and the hybridization of Carbon is
-hybridization.
The hybridization of each atom is shown in the image.
Answer:
Thiols contain stronger acids than alcohols
Explanation:
Answer:
ΔG°rxn = -69.0 kJ
Explanation:
Let's consider the following thermochemical equation.
N₂O(g) + NO₂(g) → 3 NO(g) ΔG°rxn = -23.0 kJ
Since ΔG°rxn < 0, this reaction is exergonic, that is, 23.0 kJ of energy are released. The Gibbs free energy is an extensive property, meaning that it depends on the amount of matter. Then, if we multiply the amount of matter by 3 (by multiplying the stoichiometric coefficients by 3), the ΔG°rxn will also be tripled.
3 N₂O(g) + 3 NO₂(g) → 9 NO(g) ΔG°rxn = -69.0 kJ
The chemical formula does not show how the atoms are connected to one another.
When we write the chemical formula of any substance, we are not able to understand the spatial arrangement of that substance's atoms. This is extremely important in organic compounds, which exhibit different physical characteristics as well as different chemical characteristics due to the way their atoms are arranged in space. These isomers are known as enantiomers.