Answer:
Explanation:
We shall apply Ampere's circuital law to find out magnetic field . It is given as follows.
∫B.dl = μ₀ I , B is magnetic field , I is current , μ₀ is permeability .
Radius of the wire r = 1.2 x 10⁻³ m
magnetic field B will be circular in shape around the wire. If B is uniform
∫B.dl = B x 2πr
B x 2πr = μ₀ I
B = μ₀ I / 2πr
= 4π x 10⁻⁷ x 37 /2πx1.2 x 10⁻³
= 10⁻⁷ x 2x37 / 1.2 x 10⁻³
= 61.67 x 10⁻⁴ T
= 62 x 10⁻⁴ T
The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s