Part A
Free fall motion
h = 3.1 m
Equation: Vf = √(2gh) = √(2*9.8 m/s^2 * 3.1 m) = 7.8 m/s
That is the only part in the question.
Answer:
I think its A
Explanation:
if its every 3 seconds wouldnt it be 3.0 Hz
Answer:
b. $96,914
Explanation:
360-day borrowing rate = 5%
spot rate = 0.48
360-day deposit rate = 6%
Borrow at the rate of 5% to get
SF200,000/1.05 = $190,476.19
Convert at the spot rate of $0.48 to get
190,476.19*0.48 = $91,428.57
Invest at the interest rate of 6% to get
91,428.57/1.06 = 96,914.28
Therefore, Parker Company will receive $96,914 in 360 days.
Complete Question:
A 10 kg block is pulled across a horizontal surface by a rope that is oriented at 60° relative to the horizontal surface.
The tension in the rope is constant and equal to 40 N as the block is pulled. What is the instantaneous power (in W) supplied by the tension in the rope if the block when the block is 5 m away from its starting point? The coefficient of kinetic friction between the block and the floor is 0.2 and you may assume that the block starting at rest.
Answer:
Power = 54.07 W
Explanation:
Mass of the block = 10 kg
Angle made with the horizontal, θ = 60°
Distance covered, d = 5 m
Tension in the rope, T = 40 N
Coefficient of kinetic friction, 
Let the Normal reaction = N
The weight of the block acting downwards = mg
The vertical resolution of the 40 N force, 





Power, 
