KE = 0
<h3>Further explanation </h3>
Energy is the ability to do work
Energy because its motion is expressed as Kinetic energy (KE) which can be formulated as:

So for two objects that have the same speed, the greater the mass of the object, the greater the kinetic energy
The stone in hand is in a motionless state (at rest) so that its velocity (v) = 0, so it has no kinetic energy
But this stone can have <em>potential energy that is gained due to its height</em>
Ionic compounds are formed between oppositely charged ions.
A binary ionic compound is composed of ions of two different elements - one of which is a positive ion(metal), and the other is negative ion (nonmetal).
To write the empirical formula of binary ionic compound we must remember that one ion should be positive and other ion should be negative, then only the correct formula should be written. To write the empirical formula the charges of opposite ions should be criss-crossed.
First empirical formula of binary ionic compound is written between
First Formula would be 
Second empirical formula is between 
Second Formula would be 
Note : When the subscript are same they get cancel out, so
would be written as 
Third empirical formula is between 
Third Formula would be :
Forth empirical formula is between 
Forth Formula would be :
or 
Note- The subscript will be simplified and the formula will be written as
.
The empirical formula of four binary ionic compounds are : 
Answer:
As electric current flows through a wire, it generates a magnetic field in the area surrounding the wire.
Explanation:
hope this helps
Hept for 7, hence the number is seven.
Answer:
The mass of the products left in the test tube will be less than that of the original reactants.
Explanation
The equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)
1.0 3.0 3.9 0.1
Assume you started with 1.0 g of Mg.
It will react with 3.0 g of HCl to form 3.9 g of MgCl2 and 0.1 g of H2
.
Mass of reactants = mass of products
1.0 g + 3.0 g = 3.9 g + 0.1 g
4.0 g = 4.0 g
The Law of Conservation of Mass is obeyed.
However, your test tube and its contents will weigh 0.1 g less than it did before the reaction.
Does that contradict the Law of Conservation of Mass? It does not.
One of the products was the gas, hydrogen, and it escaped from the test tube. You weren't measuring all the products, so test tube and its contents weighed less than before.