Answer:
tama yon sagot nya gayahin mo nalang
Answer:
I’m trying to do something similar to that
Explanation:
When PH + POH = 14
∴ POH = 14 -7 = 7
when POH = -㏒[OH-]
7 = -㏒ [OH-]
∴[OH-] = 10^-7
by using ICE table:
Mn(OH)2(s) ⇄ Mn2+ (aq) + 2OH-(aq)
initial 0 10^-7
change +X +2X
Equ X (10^-7 + 2X)
when Ksp = [Mn2+][OH-]^2
when Ksp of Mn(OH)2 = 4.6 x 10^-14
by substitution:
4.6 x 10^-14 = X*(10^-7+2X)^2 by solving this equation for X
∴ X =2.3 x 10-5 M
∴ The solubility of Mn(OH)2 in grams per liter (when the molar mass of Mn(OH)2 = 88.953 g/mol
= 2.3 x10^-5 moles/L * 88.953 g/mol
= 0.002 g/ L
I don’t really know but I’ll get someone to help u
Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.