Answer:
T = 4.42 10⁴ N
Explanation:
this is a problem of standing waves, let's start with the open tube, to calculate the wavelength
λ = 4L / n n = 1, 3, 5, ... (2n-1)
How the third resonance is excited
m = 3
L = 192 cm = 1.92 m
λ = 4 1.92 / 3
λ = 2.56 m
As in the resonant processes, the frequency is maintained until you look for the frequency in this tube, with the speed ratio
v = λ f
f = v / λ
f = 343 / 2.56
f = 133.98 Hz
Now he works with the rope, which oscillates in its second mode m = 2 and has a length of L = 37 cm = 0.37 m
The expression for standing waves on a string is
λ = 2L / n
λ = 2 0.37 / 2
λ = 0.37 m
The speed of the wave is
v = λ f
As we have some resonance processes between the string and the tube the frequency is the same
v = 0.37 133.98
v = 49.57 m / s
Let's use the relationship of the speed of the wave with the properties of the string
v = √ T /μ
T = v² μ
T = 49.57² 18
T = 4.42 10⁴ N
Answer:
B.
Explanation:
The water collects in the ocean; it is then evaporated by the sun. After evaporation the water turns into water vapor, it then condenses to form clouds.
Airports use ramps to connect the plane to the airport and towing trucks use ramps to get the vehicles on the truck
Answer:
The horizontal distance is 0.64 m.
Explanation:
Initial velocity, u =2.5m/s
The maximum horizontal distance is

Answer:
hypothesis , hope it helps
Explanation: