Answer:
c. The temperature at which a glass transforms from a solid to liquid.
Explanation:
The glass transition temperature is said to be a temperature range when a polymer structure transition from a glass or hardy(solid) material to a rubber like or viscous liquid material.
The glass transition temperature is an important property that is critical in product design.
Answer:
No
Explanation:
For infinite speed to be achevied, one must have no sink of energy to spend. The source of entropy in this example, is the tires hitting the surface, producing heat and friction. Not to mention that you'd still need fuel to start the car, and an infinite tunnel or track, which would be impossible and speed up to process of energy loss through entropy quicker.
2ω is the resistance of the second wire if the resistance of the first is 4ω if two wires have the same length, but the second has twice the diameter of the first.
R= 4ω.
R = ρl/A
2d=r
R2=2ω
Resistance is the capacity of a conductor to obstruct the passage of an electric current through it. It is controlled by the interaction of the applied voltage and the electric current passing through it.
Conductors have very little resistance, whereas insulators have a significant amount of resistance. The resistance increases as the current flow decreases. Resistance is influenced by the properties and dimensions of the material (area of cross section)
To know more about resistance visit : brainly.com/question/14547003
#SPJ4
Answer:
Explanation:
Hello! To solve this problem we must be clear about the concept of energy conservation, and kinetic energy with the following sentence
The kinetic energy of the two cars (v = 1.2m / S) plus the kinetic energy of the third car (v = 3.5m / S) must be equal to the kinetic energy of the three cars together.
The kinetic energy is calculated by the following equation.

m= mass of the cars=26500kg
V=speed
E=kinetic energy
taking into account the above, the following equation is inferred
1= the cars are separated
2=
the cars are togheter
E1=E2

where
m= mass of each car
V1= 1.2m/s
Va=3.5,m/S

m= mass of each car
V=speed (in m/s) of the three coupled cars after the first couples with the other two
Solving



the speed of the three coupled cars after the first couples with the other two is 2.245m/s