I believe the answer is B, a real and inverted image is formed on the side of the lens opposite the rubber ducky. The focal length is 15 cm and therefore the center of curvature (2F) will be 30 cm. When the object is placed between F and 2F (in this case 20 cm) in front of a convex lens, an inverted, real image is formed on the other side of the lens.
I think it's A. Pressure and heat built up in the magma chamber.
Answer:
x = D (M/M-m) 2.41
Explanation:
a) Let's apply Newton's second law to find the summation of force, where each force is given by the law of universal gravitation
F = g m₁m₂ / r²
Σ F = 0
F1- F2 = 0
F1 = F2
We set the reference system in the body of greatest mass (M) the planet
F1 = g m₁ M / x²
F2 = G m1 m / (D-x)²
G m₁ M / x² = G m₁ m / (D-x)²
M (D-x)² = m x²
MD² -2MD x + M x² = m x²
x² (M-m) -2MD x + MD² = 0
We solve the second degree equation
x = [2MD ±√ (4M²D² - 4 (M-m) MD²)] / 2 (M-m)
x = {2MD ± 2D √ (M² + (M-m) M)} / 2 (M-m)
x = D {M ± Ra (2M²-mM)} / (M-m)
x = D (M ± M √ (2-m/M)) / (M-m)
x = D (M / (M-m)) (1 ±√ (2-m/M)
Let's analyze this result, the value of M-m >> 1, so if we take the negative root, the value of x would be negative, it is out of the point between the two bodies, so the correct result must be taken with the positive root
x = D (M / (M-m)) (1 + √2)
x = D (M/M-m) 2.41
b) X = 2/3 D
x = D (M/M-m) 2.41
2/3 D = D (M/(M-m)) 2.41
2/3 (M-m) = M 2.41
2/3 M - 2/3 m = 2.41 M
1.743 M = 0.667 m
M/m = 0.667/1.743
M/m = 0.38