Answer:
Seismic waves are waves of energy that travel through Earth's layers, and are a result of earthquakes, volcanic eruptions, magma movement, large landslides and large man-made explosions that give out low-frequency acoustic energy
Explanation:
hope this helps if so please brainliest
Merry Christmas
Answer:
Permanent = false
Explanation:
All of the other choices are true
Answer:
9.4 liter
Explanation:
1) Data:
V₁ = 10.0 L
T₁ = 25°C = 25 + 273.15 K = 298.15 K
P₁ = 98.7 Kpa
T₂ = 20°C = 20 + 273.15 K = 293.15 K
P₂ = 102.7 KPa
V₂ = ?
2) Formula:
Used combined law of gases:
PV / T = constant
P₁V₁ / T₁ = P₂V₂ / T₂
3) Solution:
Solve the equation for V₂:
V₂ = P₁V₁ T₂ / (P₂ T₁)
Substitute and compuite:
V₂ = P₁V₁ T₂ / (P₂ T₁)
V₂ = 98.7 KPa × 10.0 L × 293.15 K / (102.7 KPa × 298.15 K)
V₂ = 9.4 liter ← answer
You can learn more about gas law problems reading this other answer on
Explanation:
Mn metal can be used as a sacrificial electrode to prevent the rusting of an iron pipe. So, the correct option is (c) Mn.
Commonly, sacrificial electrodes are employed to stop another metal from corroding or oxidising. A metal that is more reactive than the metal being shielded must serve as the sacrificial electrode. Magnesium, aluminium, and zinc are the three metals most frequently used in sacrificial anodes.
Manganese-Magnesium (Mn-Mg) electrode is more suited for on-shore pipelines where the electrolyte (soil or water) resistivity is higher since it has the highest negative electropotential of the three. In order to replenish any electrons that could have been lost during the oxidation of the shielded metal, the highly active metal offers its electrons.
Therefore, Mn metal can be used as a sacrificial electrode to prevent the rusting of an iron pipe. So, the correct option is (c) Mn.
Learn more about electrode here:
brainly.com/question/17060277
#SPJ4