<span>Yes, there are! r1 and r2 are numbers. The volume of the hollow shell is 4 π 3 ( r 3 1 − r 3 2 ) 4π3(r13−r23). Now multiply by ρ to get the mass.</span>
At the top of the mountain, when he tightens the cap onto the bottole, there is some water and some air inside the bottle. Then he brings the bottle down to the base of the mountain.
The pressure on the outside of the bottle is greater than it was when he put the cap on. If anything could get out of the bottlde, it would. But it can't . . . the cap is on too tight. So all the water and all the air has to stay inside, and anything that can get squished into a smaller space has to get squished into a smaller space.
The water is pretty much unsquishable.
Biut the air in there can be <em>COMPRESSED</em>. The air gets squished into a smaller space, and the bottle wrinkles in slightly.
Explanation:
Given:
Solving for
:

where:

Integrating to get
with initial conditions
:

Integrating to get x with initial conditions x(0) = 0:

When t=T:


1-fixation ( Bacteria Converts nitrogen to ammonium so plants can use it )
2-nitrification ( bacteria changes ammonium to nitrates and plants )
3 - Assimilation (plants absorb nitrates it is then used for Chlorophyll..)
Part (a): Magnetic dipole moment
Magnetic dipole moment = IA, I = Current, A = Area of the loop
Then,
Magnetic dipole moment = 2.6*π*0.15^2 = 0.184 Am^2
Part (b): Torque acting on the loop
T = IAB SinФ, where B = Magnetic field, Ф = Angle
Then,
T = Magnetic dipole moment*B*SinФ = 0.184*12*Sin 41 = 1.447 Nm