Answer:
a. N(500, 100)
Step-by-step explanation:
The normal probability distribution, with mean M and standard deviation S, can be represented in the following notation.
N(M,S).
In this problem, we have that:
Mean = 500
Standard deviation = 100
Which of the following options would be the correct way to represent the information?
a. N(500, 100)
If you do 50 times 4 it’s easier to find 500 times 400 because all you have to do it add 3 more zeros behind 200 making the answer be 200,000.
Answer:
a. 1 1/2 (or 3/2)
b. 2/3
c. 1
d. 1
Step-by-step explanation:
Part A: (1,1) (7,5)
To determine the slope, you will use the equation m=(y2-y1)/(x2-x1). Keep in mind that it doesn't matter what point you use for (x1, y1) or (x2, y2).
Let's plug in the numbers for part a:
m=(7-1)/(5-1)
Let's then solve the problems inside the parentheses:
m=6/4
And finally, we simplify:
m=3/2 (or 1 1/2 depending on what your teacher wants for an answer)
For these others, I will just go through the steps and not explain them, if you need help or don't understand something I'm doing, either look back at what I did for part a or comment on this answer.
Part B: (1,1) (5,7)
m=(5-1)/(7-1)
m=(4/6)
m=2/3
Part C: (2,5) (-1,2)
m=(-1-2)/(2-5)
m=(-3/-3)
m=1
Part D: (2,5) (-7,-4)
m=(-7-2)/(-4-5)
m=(-9/-9)
m=1
Queremos ver que fracción de la finca se ha destinado a plazas de aparcamiento.
La solución es:
La fracción de la finca que se destina a plaas de aparcamiento es 3/56
Sabemos que originalmente se iba a destinar 3/14 del total de la finca a plazas de aparcamiento, pero finalmente se destino 3/4 de lo previsto a zonas ajardinadas.
Es decir, <u>se destino 3/4 de los 3/14 del total de la finca</u> a zonas ajardinadas, entonces <u>el 1/4 restante se dedico a plazas de aparcamiento</u>, esto da:
(1/4)*3/14 = 3/56
La fracción de la finca que se destina a plaas de aparcamiento es 3/56
Sí quieres aprender más, puedes leer:
brainly.com/question/16649102
Answer:
sdfgfgav
Step-by-step explanation: