.
<h3>Explanation</h3>
The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:

where,
the total power emitted,
the surface area of the body,
the Stefan-Boltzmann Constant, and
the temperature of the body in degrees Kelvins.
.
.
.
Keep as many significant figures in
as possible. The error will be large when
is raised to the power of four. Also, the real value will be much smaller than
since the emittance of a human body is much smaller than assumed.
Electromagnectic Waves Travel In A Vacuum
You have to solve this by using the equations of motion:
u=3
v=0
s=2.5
a=?
v^2=u^2+2as
0=9+5s
Giving a=-1.8m/s^2
Then using the equation:
F=ma
F is the frictional force as there is no other force acting and its negative as its in the opposite direction to the direction of motion.
-F=25(-1.8)
F=45N
Then use the formula:
F=uR
Where u is the coefficient of friction, R is the normal force and F is the frictional force.
45=u(25g)
45=u(25*10)
Therefore, the coefficient of friction is 0.18
Hope that helps
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2