Answer:
122.84 J
Explanation:
Since plate is square, area, A is given by 
The distance between plates, d, is given in the question as 2mm=0.002m
Charge on plate, Q, as given in the question is 240 
Assuming mica dielectric constant, k of 7
Capacitance, C is given by
C=
Stored energy, E is given by
E=
Therefore, the stored energy is 122.84 J
G.P.E = mgh
Weight = mg = 200N
So G.P.E = 200 * 2 = 400 Joules
The volume corresponds to the measure of the space occupied by a body. From the given dimensions we can intuit that we are looking to find the Volume of an Cuboid, that is, an orthogonal rectangular prism, whose faces form straight dihedral angles.
Mathematically the volume of this body is given as

Where,
L = Length
W = Width
H = High


Note: The value given for the height was in centimeters, so it was transformed to meters.
Answer:
We apply force to move the brick.
Explanation:
Let me first of define a force .
A force is something applied to an object or thing to change it's internal or external state.
Now if a brick is resting on smooth wood inclined at 30° to the horizontal for us to overcome the friction which is also a force we have to apply a force greater than the gravity force acting on the body and then depending on the direction of the applied force the angle to apply it also.
Answer:
16.1 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, the spring is compressed by x = 35 cm = 0.35 m, and it stores an elastic potential energy given by

where k = 316 N/m is the spring constant. Once the block is released, the spring returns to its natural length and all its elastic potential energy is converted into kinetic energy of the block (which starts moving). This kinetic energy is equal to

where m = 0.15 kg is the mass of the block and v is its speed.
Since the energy must be conserved, we can equate the initial elastic energy of the spring to the final kinetic energy of the block, and from the equation we obtain we can find the speed of the block:
