Answer:
Solid-state
Explanation:
A solid-state device can be defined as a crystalline material that is typically made up of semiconductor and as such controls the number and rate of flow of charged carriers such as holes or electrons.
Some examples of a solid-state device are light emitting diodes (LED), integrated circuit (IC), Transistors, liquid crystal display (LCD) etc.
A solid-state device such as a transistor, refers to a semiconductor component that is used to control the flow of voltage or current and as a gate (switch) for electronic signals. Thus, a transistor allows for the amplification, control and generation of electronic signals in a circuit.
Hence, solid-state devices need constant power to operate. The timing functions are initiated by the presence or absence of a separate "trigger" signal.
Basically, these solid-state devices use the optical and electrical properties of semiconductor components such as transistors, triacs, thyristors, diodes to perform its input-output switching and isolation functions.
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
Answer:
t = 120.5 nm
Explanation:
given,
refractive index of the oil = 1.4
wavelength of the red light = 675 nm
minimum thickness of film = ?
formula used for the constructive interference

where n is the refractive index of oil
t is thickness of film
for minimum thickness
m = 0


t = 120.5 nm
hence, the thickness of the oil is t = 120.5 nm
The elastic potential energy of the spring is 0.31 J
Explanation:
The elastic potential energy of a spring is given by

where
k is the spring constant
x is the compression/stretching of the spring
For the spring in this problem, we have:
k = 500 N/m (spring constant)
x = 0.035 m (compression)
Substituting, we find the elastic potential energy:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
33.6 m
Explanation:
Given:
v₀ = 0 m/s
a = 47.41 m/s²
t = 1.19 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (1.19 s) + ½ (47.41 m/s²) (1.19 s)²
Δx = 33.6 m